Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38430164

RESUMO

Background: Glioma (GL) , a primary brain tumor, presents significant challenges in patient care due to its complex disease trajectory and psychological impact. Phased nursing interventions, grounded in the Chronic Illness Trajectory Model (CITM), offer a holistic approach to addressing these multifaceted needs. Objective: The objective of this study was to assess the impact of phased nursing within the CITM on the psychological well-being, quality of life, and cancer-related fatigue (CRF) of glioma patients. Methods: A total of 100 GL patients undergoing treatment at our hospital between February 2020 and February 2021 were enrolled in this randomized controlled trial. Patients were randomly assigned to either the control group, which received standard routine care, or the observation group, which received phased nursing interventions based on the CITM framework. The mental state, quality of life, and CRF scores of the patients were assessed using validated measures at baseline and following the intervention period. Statistical analyses were conducted to compare the outcomes between the two groups. Results: The findings revealed that patients in the observation group exhibited significantly higher scores in mental state and quality of life domains compared to those in the control group (P < .05). Additionally, patients receiving phased nursing showed a significant reduction in CRF scores post-intervention. These results indicate that phased nursing within the CITM framework has a beneficial effect on the psychological well-being and overall quality of life of GL patients while also mitigating CRF. Conclusions: Our findings suggest that incorporating phased nursing interventions into the care of GL patients can lead to improvements in psychological outcomes, CRF, and quality of life. These findings underscore the importance of adopting holistic approaches to patient care, particularly in chronic disease management.

2.
Sci Data ; 11(1): 175, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326339

RESUMO

Chinese sea bass (Lateolabrax maculatus) is a highly sought-after commercial seafood species in Asian regions due to its excellent nutritional value. With the rapid advancement of bioinformatics, higher standards for genome analysis compared to previously published reference genomes are now necessary. This study presents a gapless assembly of the Chinese sea bass genome, which has a length of 632.75 Mb. The sequences were assembled onto 24 chromosomes with a coverage of over 99% (626.61 Mb), and telomeres were detected on 34 chromosome ends. Analysis using Merqury indicated a high level of accuracy, with an average consensus quality value of 54.25. The ONT ultralong and PacBio HiFi data were aligned with the assembly using minimap2, resulting in a mapping rate of 99.9%. The study also identified repeating elements in 20.90% (132.25 Mb) of the genome and inferred 22,014 protein-coding genes. These results establish meaningful groundwork for exploring the evolution of the Chinese sea bass genome and advancing molecular breeding techniques.


Assuntos
Bass , Animais , Bass/genética , Genoma , Telômero/genética
3.
Fish Shellfish Immunol ; 146: 109428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325594

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/genética , Transcriptoma , Fígado/metabolismo , Hepatócitos/metabolismo , Comunicação Celular
4.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199974

RESUMO

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Estudo de Associação Genômica Ampla/veterinária , Sequenciamento de Cromatina por Imunoprecipitação/veterinária , RNA-Seq/veterinária , Análise de Sequência de RNA/veterinária , Cromatina , Glicogênio
5.
Zool Res ; 45(1): 215-225, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247179

RESUMO

A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1 633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Based on mitochondrial genomic characteristics, morphological examination, and sclerite scanning electron microscopy, the samples were categorized into four suborders (Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera), and identified as 9 possible new cold-water coral species. Assessments of GC-skew dissimilarity, phylogenetic distance, and average nucleotide identity (ANI) revealed a slow evolutionary rate for the octocoral mitochondrial sequences. The nonsynonymous ( Ka) to synonymous ( Ks) substitution ratio ( Ka/ Ks) suggested that the 14 protein-coding genes (PCGs) were under purifying selection, likely due to specific deep-sea environmental pressures. Correlation analysis of the median Ka/ Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b (cyt b) and DNA mismatch repair protein ( mutS) may be influenced by environmental factors in the context of deep-sea species formation. This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Filogenia , China , Citocromos b/genética
6.
Gene ; 901: 148199, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253299

RESUMO

SET (SuVar3-9, Enhancer of Zeste, Trithorax) domain bifurcated histone lysine methyltransferase 1, setdb1, is the predominant histone lysine methyltransferase catalyzing H3K9me3. Prior studies have illustrated that setdb1 and H3K9me3 critically regulate sex differentiation and gametogenesis. However, the molecular details by which setdb1 is involved in these processes in fish have been poorly reported. Here, we cloned and characterized the setdb1 ORF (open reading frame) sequence from Chinese tongue sole (Cynoglossus semilaevis). The setdb1 ORF sequence was 3,669 bp, encoding a 1,222-amino-acid protein. Phylogenetic analysis showed that setdb1 was structurally conserved. qRT-PCR revealed that setdb1 had a high expression level in the testes at 12 mpf (months post fertilization). Single-cell RNA-seq data at 24 mpf indicated that setdb1 was generally expressed in spermatogenic cells at each stage except for sperm and was centrally expressed in oogonia. H3K9me3 modification was observed in gonads with the immunofluorescence technique. Furthermore, the overexpression experiment suggested that sox5 was a candidate target of setdb1. sox5 was abundantly expressed in male and pseudomale gonads at 24 mpf. Single-cell RNA-seq data showed that sox5 was mainly expressed in spermatogonia and its expression gradually declined with differentiation. Taken together, our findings imply that setdb1 regulates sox5 transcription in gonads, which provides molecular clues into histone modification-mediated orchestration of sex differentiation and gametogenesis.


Assuntos
Proteínas de Peixes , Linguado , Código das Histonas , Histona-Lisina N-Metiltransferase , Fatores de Transcrição SOXD , Animais , Masculino , Linguado/genética , Gônadas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Filogenia , Sêmen/metabolismo , Fatores de Transcrição SOXD/metabolismo , Proteínas de Peixes/metabolismo
7.
Genome Biol Evol ; 15(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37768150

RESUMO

Lutjanus erythropterus (Bloch, 1790), a Perciformes from the Lutjanidae family, is a commercially important species because of its taste and abundance. Despite the increase in genome resources in recent years, few genome assemblies are available within this fish family for comparative and functional studies. In this study, we determined the chromosomal genome of Crimson snapper using high-throughput Single-Tube Long Fragment Reads sequencing technology and Hi-C data. The final assembly size was 973.04 Mb with contig and scaffold N50 values of 1.51 and 40.65 Mb, respectively. We successfully scaffolded 95.84% of the genome sequence onto 24 chromosomes ranging in length from 19.37 to 49.48 Mb. A total of 22,663 genes and 13,877 gene families were identified in the genome, with 29 gene families being L. erythropterus-specific. A phylogenetic analysis using single-copy gene families showed that L. erythropterus and Larimichthys crocea had the closest genetic relationship with a divergence time of ∼47.7 Ma. This new genomic resource will facilitate comparative genomic studies as well as genetic breeding programs for L. erythropterus.

8.
J Control Release ; 363: 275-289, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726035

RESUMO

Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as promising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex-determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.


Assuntos
Exossomos , Vesículas Extracelulares , Masculino , Animais , Exossomos/genética , Testículo , Endossomos , Peptídeos , Mamíferos
9.
Animals (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760359

RESUMO

Tiger puffer fish (Takifugu rubripes) has become the main fish species cultured in China since the last century because of its high economic value. Male and female tiger puffer fish need 2 and 3 years each to reach sexual maturity, which limits the development of breeding research for this species. In recent years, in vitro culture of fish spermatogonial stem cells (SSCs) have shown potential in aquaculture. In the present study, we established a spermatogenic stem cell line from T. rubripes (TrSSCs). TrSSCs were characterized by polygonal morphology, predominantly retained 44 chromosomes, and grew rapidly at 26 °C and in L-15. TrSSCs were still able to grow stably after more than one year of in vitro culture. TrSSCs showed positive alkaline phosphatase staining. TrSSCs expressed germ cell-associated genes, including dnd, ddx4, piwil, gfra1b, sox2, myca, nanog, ly75, and dazl, as determined by semiquantitative assays, and almost all cells were found to express the germ cell genes ddx4 and gfra1b in a fluorescence in situ hybridization assay. In vitro, induction experiments demonstrated the TrSSCs possessed the ability to differentiate into other types of cells. Our research has enriched the fish spermatogonial stem cell resource bank, which will provide an efficient research model for sex determination and sex control breeding in fish, establishing a foundation for subsequent breeding research.

11.
Sci Data ; 10(1): 215, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062798

RESUMO

Red claw crayfish (Cherax quadricarinatus) is an aquatic crustacean with considerable potential for the commercial culture and an ideal model for studying the mechanism of sex determination. To provide better genomic resources, we assembled a chromosome-level genome with a size of 5.26 Gb and contig N50 of 144.33 kb. Nearly 90% of sequences were anchored to 100 chromosomes, which represents the high-quality crustacean genome with the largest number of chromosomes ever reported. The genome contained 78.69% repeat sequences and 20,460 protein-coding genes, of which 82.40% were functionally annotated. This chromosome-scale genome would be a valuable reference for assemblies of other complex genomes and studies of evolution in crustaceans.


Assuntos
Astacoidea , Genoma , Animais , Astacoidea/genética , Cromossomos/genética , Genômica , Filogenia , Sequências Repetitivas de Ácido Nucleico
12.
Nature ; 615(7951): 285-291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859541

RESUMO

The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.


Assuntos
Evolução Molecular , Mutação em Linhagem Germinativa , Taxa de Mutação , Vertebrados , Animais , Feminino , Masculino , Aves/genética , Peixes/genética , Mutação em Linhagem Germinativa/genética , Mamíferos/genética , Répteis/genética , Vertebrados/genética
13.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868220

RESUMO

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Assuntos
Euphausiacea , Genoma , Animais , Relógios Circadianos/genética , Ecossistema , Euphausiacea/genética , Euphausiacea/fisiologia , Genômica , Análise de Sequência de DNA , Elementos de DNA Transponíveis , Evolução Biológica , Adaptação Fisiológica
14.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835170

RESUMO

Fish sex determination can be affected by environmental temperature. This process relies on temperature-sensitive proteins such as heat shock proteins (HSPs). Our previous work found that heat shock cognate proteins (HSCs) may participate in high-temperature associated sex reversal of Chinese tongue sole (Cynoglossus semilaevis). However, the role of hsc genes in responding to high temperature and affecting sex determination/differentiation remains unclear. Here, by using C. semilaevis as model, we identified hsc70 and hsc70-like. hsc70 was abundant in the gonads with a testicular-higher expression at all gonadal development stages except for 6 months post fertilization (mpf). Intriguingly, hsc70-like showed higher expression in testes from 6 mpf on. Both long-term heat treatment during the temperature-sensitive sex-determining period and short-term heat stress at the end of this period caused different expression of hsc70/hsc70-like between sexes. The dual-luciferase assay results also suggested that these genes can respond to high temperature rapidly in vitro. Heat treatment of C. semilaevis testis cells overexpressed with hsc70/hsc70-like could affect the expression of sex-related genes sox9a and cyp19a1a. Our results indicated that hsc70 and hsc70-like were key regulators linking external high-temperature signals with sex differentiation in vivo and provide a new idea for understanding the mechanism by which high temperature affects sex determination/differentiation in teleosts.


Assuntos
Linguados , Linguado , Proteínas de Choque Térmico HSC70 , Processos de Determinação Sexual , Animais , Masculino , Proteínas de Peixes/genética , Linguados/genética , Linguado/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSC70/metabolismo , Processos de Determinação Sexual/genética
15.
Sci China Life Sci ; 66(5): 1151-1169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36437386

RESUMO

Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.


Assuntos
Testículo , Transcriptoma , Animais , Masculino , Feminino , Testículo/metabolismo , Espermatogênese/genética , Células Germinativas , Peixes/genética
16.
Animals (Basel) ; 14(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38200815

RESUMO

As a common influencing factor in the environment, temperature greatly influences the fish that live in the water all their life. The essential economic fish Chinese tongue sole (Cynoglossus semilaevis), a benthic fish, will experience both physiological and behavioral changes due to increases in temperature. The brain, as the central hub of fish and a crucial regulatory organ, is particularly sensitive to temperature changes and will be affected. However, previous research has mainly concentrated on the impact of temperature on the gonads of C. semilaevis. Instead, our study examines the brain using transcriptomics to investigate specific genes and pathways that can quickly respond to temperature changes. The fish were subjected to various periods of heat stress (1 h, 2 h, 3 h, and 5 h) before extracting the brain for transcriptome analysis. After conducting transcriptomic analyses, we identified distinct genes and pathways in males and females. The pathways were mainly related to cortisol synthesis and secretion, neuroactive ligand-receptor interactions, TGF beta signaling pathway, and JAK/STAT signaling pathway, while the genes included the HSP family, tshr, c-fos, c-jun, cxcr4, camk2b, and igf2. Our study offers valuable insights into the regulation mechanisms of the brain's response to temperature stress.

17.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552742

RESUMO

Spermatogenesis is a complex and continuous process of germ-cell differentiation. This complex process is regulated by many factors, of which gene regulation in spermatogenic cells plays a decisive role. Spermatogenesis has been widely studied in vertebrates, but little is known about spermatogenesis in protochordates. Here, for the first time, we performed single-cell RNA sequencing (scRNA-seq) on 6832 germ cells from the testis of adult Ciona intestinalis. We identified six germ cell populations and revealed dynamic gene expression as well as transcriptional regulation during spermatogenesis. In particular, we identified four spermatocyte subtypes and key genes involved in meiosis in C. intestinalis. There were remarkable similarities and differences in gene expression during spermatogenesis between C. intestinalis and two other vertebrates (Chinese tongue sole and human). We identified many spermatogenic-cell-specific genes with functions that need to be verified. These findings will help to further improve research on spermatogenesis in chordates.


Assuntos
Ciona intestinalis , Testículo , Masculino , Animais , Adulto , Humanos , Testículo/metabolismo , Ciona intestinalis/genética , Espermatogênese/genética , Espermatócitos , Análise de Sequência de RNA
18.
Mol Cell ; 82(21): 4018-4032.e9, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332605

RESUMO

Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.


Assuntos
RNA Longo não Codificante , Humanos , Aneuploidia , Proteína Centromérica A/metabolismo , DNA , Cinetocoros/metabolismo , RNA Longo não Codificante/genética , Centrômero
19.
Front Immunol ; 13: 949670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059498

RESUMO

Exosomes are a class of extracellular vesicles with diameters ranging from ~50 to 150 nm. Incorporating diverse biological substances and being present extensively in biofluids, exosomes are involved in intracellular communication in various physiological and pathological processes and emerging as promising biomarkers for the prognosis and diagnosis of many diseases. Accumulating evidence shows that exosomes also play important roles in the inflammatory and immune responses to bacterial infection. However, the study of exosomes in teleost fish remains scarce. In the present study, we focused on the exosomal microRNAs (miRNAs) in the plasma of Chinese tongue sole (Cynoglossus semilaevis) in response to Vibrio harveyi infection. After bacterial challenge, the plasma was sampled at both the early (6 and 16 h) and late stages. (48, 72, and 96 h) of infection, followed by exosome isolation and exosomal miRNA sequencing. Results showed that the expression profile of 85 exosomal miRNAs was significantly different among the control, early-, and late-infection groups. The predictive genes targeted by exosomal miRNAs were extensively involved in various inflammatory and immune processes by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, suggesting that a series of processes were regulated by exosomal miRNAs in the plasma, including the pathogen invasion and recognition and the activation and regulation of signaling pathways related to cytokine production. Moreover, the spleen was found to be a preference for exosome enrichment and the underlying mechanism of interleukin-6 production regulated by ZC3H12A, ARID5A, and exosomal ssa-miR-146a-5p were probably present in Chinese tongue sole. Additionally, the enhanced levels of ssa-miR-146a-5p and nbr-miR-731 in plasma exosomes and the spleen of the infection groups were identified, indicating their application as biomarkers in favor of the prognosis and diagnosis of V. harveyi infection in Chinese tongue sole. Therefore, the collective results in the present study indicated the pleiotropic roles of exosomal miRNAs in the regulation of inflammatory and immune responses and their potential utilization as biomarkers in teleost fish.


Assuntos
Linguado , MicroRNAs , Vibrioses , Animais , Biomarcadores , Peixes/genética , Linguado/genética , Imunidade , MicroRNAs/genética , MicroRNAs/metabolismo , Vibrio , Vibrioses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...